If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+384Y
We move all terms to the left:
-(-16Y^2+384Y)=0
We get rid of parentheses
16Y^2-384Y=0
a = 16; b = -384; c = 0;
Δ = b2-4ac
Δ = -3842-4·16·0
Δ = 147456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{147456}=384$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-384)-384}{2*16}=\frac{0}{32} =0 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-384)+384}{2*16}=\frac{768}{32} =24 $
| 3.5x-2.1=15.4 | | 2x^2+-7x-4=0 | | 2x-5(x-4)=-9+4x-13 | | 8+5x=7x=2 | | -6.1k+6.91=0.43-7k | | -2m=5m+14m+28 | | 6v−6v+4v=20 | | F(x)=4x^2+6x-4 | | -2x^2-6x=7 | | (18x^2+6)/(x^2-1)^3=0 | | 9x-25+6x+8=10x-73=180 | | -7x-3+1=2+8-7x | | -4v=16/7 | | 138=5x-2+13x | | 34=42-4x | | 4a+5a-2(2a)35=0 | | 5p+4=3(p-1) | | 8x-11+64+71=180 | | 2/5d-1=3/5-3 | | –9−d−7=8−4d | | -9(t-2)=4(t-1 | | 3x-14+57=7x+23 | | (t+1)²+(t-5)²=45 | | 208+76+10x-4=360 | | 0.17x=-0.34 | | 5x+(-3)=32 | | -5x+1=-4x+1-x | | x2=1-x | | x^2-47x+90=0 | | 4x=x=27 | | 3(5x+2)–7(3–x)=(19+5x)+(20–x) | | 4(3–x)+3(4x+5)=–45 |